Barrier, mechanical, and thermal properties of the three-layered co-extruded blown polyethylene/ethylene–vinyl alcohol/low density polyethylene film without tie layers

Author:

Ge Changfeng1,Lei Kai1,Aldi Robert1

Affiliation:

1. Department of Packaging Science, Rochester Institute of Technology, Rochester, NY, USA

Abstract

This article investigates three-layer co-extruded blown film comprised of low-density polyethylene (LDPE)/ethylene–vinyl alcohol (EVOH)/LDPE without adhesion layers. Various thicknesses of pure EVOH were sandwiched by outer LDPE layers blended with linear low-density polyethylene-grafted-maleic anhydride (LLDPE- g-MAH) as compatibilizer in concentrations from 0 wt% to 2.0 wt%. The study found that a mere 3-μ EVOH layer can achieve a 180 times improvement of oxygen barrier properties as compared to the control sample. When the EVOH loading is 10–15 wt% of the total film mass, the addition of LLDPE- g-MAH into the outer layers indicated a positive synergistic effect by enhancing barrier properties. In contrast, when the EVOH loadings are at 5 wt% and 7.5 wt%, the barrier properties of the film was reduced. Layer-to-layer interaction between the LDPE and EVOH was notably improved as demonstrated by a 26–42% increase of interlaminate peel strength in the presence of 0.5–2 wt% LLDPE- g-MAH in all samples. Congruently, the introduction of the LLDPE- g-MAH into the outer LDPE layers also resulted in an increased dart impact toughness and tensile strength for the film. The EVOH crystallinity showed a reduction after adding LLDPE- g-MAH, particularly apparent for the lower EVOH concentrations.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3