Nonlinear low-velocity impact analysis of functionally graded shallow spherical shells in thermal environments

Author:

Fu Yiming1,Hu Sumin1,Mao Yiqi2

Affiliation:

1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, People’s Republic of China

2. State Key Laboratory for Turbulence and Complex Systems (LTCS), College of Engineering, Peking University, Beijing, People’s Republic of China

Abstract

This article presents the nonlinear dynamic response of functionally graded (FG) shallow spherical shells in thermal environments subjected to low-velocity impact by an elastic ball. The material properties of a FG shallow spherical shell vary continuously through the thickness according to a power law distribution of the volume fraction of the constituents. The temperature field is considered to vary along the thickness direction due to the steady state heat transfer. Based on the higher order shear deformation theory, the governing equations of motion for the shell, which account for geometric nonlinearity is obtained using Hamilton’s principle. The contact force between the shell and the impactor is relative to local deformation and calculated using a numerical method. Then, the governing equations of motion are solved numerically by the Chebyshev collocation method and Newmark scheme. This is a complete model that can not only fully model the dynamic behavior of the shell but also fully model the impactor’s dynamic behavior. In the numerical example, the effects of material properties, temperature, initial impact velocity and mass of the impactor on the dynamic behavior of the shells, and contact force are discussed in detail.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3