Heating mechanisms in induction welding of thermoplastic composites

Author:

Barazanchy Darun1ORCID,van Tooren Michel1ORCID

Affiliation:

1. SmartState Center for Multifunctional Materials and Structures, Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Abstract

The heat generated within thermoplastic carbon composite laminates during induction welding can be attributed to one, or a combination of the three heating mechanisms discussed in the literature: (i) Joule heating of fibers; (ii) Joule and/or dielectric heating of polymer; and (iii) fiber-to-fiber contact resistance heating. The answer to the question, which of the three heating mechanisms is most dominant, remains open. This research aims to provide an answer to this question through finite element simulations using both an in-house developed numerical Whitney-elements based toolbox for induction welding simulations (WelDone), and the commercially available software, ANSYS Maxwell. The simulations are done at two levels; first, using WelDone laminate-level simulations are performed to see in which direction: fiber-, transverse to the fiber-, or thickness direction, most of the heat was generated; and second, ANSYS Maxwell was used to simulate the solid loss on a microscopic, inside fiber and resin, level with and without the presence of resin. In the latter series of simulations, contact between fibers in different layers was explicitly modeled. The numerical simulations revealed that on the laminate-level most heat is generated in the fiber- and thickness directions. The former coincides with Joule heating of fibers, while the latter can be attributed to either Joule heating of polymer and fiber-to-fiber contact resistance heating, or both. The fiber level simulations, however, revealed that both fiber-to-fiber contact and no-fiber-to-fiber contact conditions have a significantly small effect on the solid loss compared to presence of resin. Based on the latter, the heat generation in the thickness direction was attributed to a second heating mechanism; Joule heating of polymer. It must be noted that the dielectric heating of polymer was ignored due to the relatively low operating frequency at which induction welding takes place.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3