Affiliation:
1. Korea Carbon Industry Promotion Agency, Jeonju 54853, Republic of Korea
2. Korea Institute of Convergence Textile, Iksan 54588, Republic of Korea
Abstract
Among the various welding techniques used to bond thermoplastic composites, induction welding stands out as a fast, clean, and contact-free process that shortens the welding time and prevents the weight increase of mechanical fastening, such as rivets and bolts. In this study, we manufactured polyetheretherketone (PEEK)-resin-based thermoplastic carbon fiber (CF) composite materials at different automated fiber placement laser powers (3569, 4576, and 5034 W) and investigated their bonding and mechanical characteristics after induction welding. The quality of the composite was evaluating using various techniques, including optical microscopy, C-scanning, and mechanical strength measurements, and a thermal imaging camera was used to monitor the surface temperature of the specimen during its processing. The results revealed that the preparation conditions of the polymer/carbon fiber composites, such as the laser power and surface temperature, significantly affect the quality and performance of the induction-welding-bonded composites. A lower laser power during preparation resulted in weaker bonding between components of the composite and yielded samples with a lower shear stress.
Funder
2020 Ministry of Trade, Industry & Energy and the Institute for Industrial Technology Evaluation and Management
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献