Fabrication of magnetite nanoparticles/polyvinylpyrrolidone composite nanofibers and their application as electromagnetic interference shielding material

Author:

Nasouri Komeil1,Shoushtari Ahmad Mousavi1

Affiliation:

1. Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Magnetite (Fe3O4) nanoparticles/polyvinylpyrrolidone (PVP) composite nanofibers (FCNFs) have been fabricated to evaluate the potential of FCNFs as electromagnetic interference (EMI) shielding material in the frequency range of 8.2–12.4 GHz. The scanning electron microscope and viscosity analyses confirmed the presence of good dispersion Fe3O4 nanoparticles encapsulated within the electrospun nanofibers and showed FCNF morphologies with diameters of 150–500 nm. The magnetic properties and electrical conductivity of FCNFs were found to be dependent on Fe3O4 nanoparticles concentration and showed an increase with increasing Fe3O4 nanoparticles loading. The EMI shielding efficiency of FCNFs increased up to approximately 22 dB. The EMI shielding results for FCNFs showed that absorption was the major shielding mechanism and reflection was the secondary shielding mechanism. The present study has shown the possibility of utilizing magnetic FCNFs as EMI shielding/absorption materials.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3