Enhancing the mechanical and electrical properties of irradiated acrylonitrile butadiene rubber/magnetite nanocomposites for electromagnetic shielding applications

Author:

Mounir Rania1ORCID,El Zayat MM1,Sharaf A1ORCID,El-Gamal AA2ORCID

Affiliation:

1. Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

2. Physics Department, Faculty of Science, Cairo University, Giza, Egypt

Abstract

By using a traditional roll mill, nitrile butadiene rubber (NBR)/magnetite nanocomposites for electromagnetic interference shielding applications were successfully prepared. The synthesized magnetite nanoparticles were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), and energy dispersive X-ray (EDX) techniques. The results from these techniques emphasis the preparation of Fe3O4 with a diameter range between 3.8 nm and 19 nm. Before and after gamma irradiation at different doses the impact of adding different contents of magnetite nanoparticles in NBR was carefully examined through mechanical and electrical measurements for all samples at room temperature. The mechanical parameters and the electrical properties of NBR were enhanced after adding Fe3O4 nanoparticles. Electromagnetic interference shielding (EMI) for all fabricated nanocomposites before and after gamma-ray irradiation under the same conditions of pressure, humidity and temperature was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the prepared samples was measured in the X-band of the radio frequency range. There are three global maxima around 9.4 GHz, 10.4 GHz, and 11.4 GHz. Subsequent reinforcement of Fe3O4 nanoparticles into NBR produced higher shielding effectiveness for radio frequency signals. Furthermore, applied gamma radiation doses improved the shielding properties of the fabricated nanocomposites.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3