A Unified Micromechanical Model for the Mechanical Properties of Two Constituent Composite Materials. Part I: Elastic Behavior

Author:

Huang Zheng Ming1

Affiliation:

1. Department of Mechanics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China;Department of Mechanical and Production Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.

Abstract

This series of papers reports a new, general, and unified micromechanical model for estimating the three-dimensional mechanical properties of a composite made from two isotropic constituent materials, i.e., continuous fiber and matrix. The present paper focuses on model development and its application to the prediction of the composite elastic property. The most important feature of this model is that the stresses generated in the constituents in a representative volume element of the composite are correlated with a bridging matrix. Based on this bridging matrix, those required quantities for the composite follow easily. A general routine to determine the bridging matrix elements is presented, and a set of explicit expressions of them for simulating a transversely isotropic composite is given. The bridging matrix depends on the physical as well as the geometrical properties of the fiber and matrix materials. For a fixed geometry, the bridging matrix can depend only on the physical properties of the constituents. This feature makes it easy to extend the present bridging matrix to include any inelastic deformation effect from the constituents and to establish a unified model to simulate, in addition, the plastic, strength, rubber-elastic, and laminate failure behaviors of fibrous composites, which will be addressed subsequently. Only linear elastic properties are considered in the present paper. The model has been applied to estimate the elastic properties of two unidirectional composites and a knitted-fabric-reinforced composite. Good agreement has been found between the predicted and available experimental data.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Reference14 articles.

1. Critique on Theories Predicting Thermoelastic Properties of Fibrous Composites

2. Analysis of Properties of Fiber Composites With Anisotropic Constituents

3. Analysis of Composite Materials—A Survey

4. 4. Halpin, J. C. 1992. Primer on Composite Materials Analysis, 2nd ed. Technomic Publishing Co., Inc., Lancaster, Basel, pp. 153-192.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3