Effects of thermo-oxidative aging on progressive bending damages and electromechanical behaviors of carbon fiber/epoxy 3D woven composites

Author:

Li Gen1,Wu Tianwei1,Sun Baozhong1ORCID,Gu Bohong1ORCID

Affiliation:

1. Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai, China

Abstract

The effect of thermo-oxidative aging on mechanical properties is important to designing carbon fiber-reinforced composites serviced in long-term atmospheric environments. Here, we report the progressive bending damage behaviors of carbon fiber/epoxy 3D angle-interlock woven composites (3DAWCs) after thermo-oxidative aging. Three-point bending tests were conducted to characterize bending damage behaviors after different aging days. The electrical resistance change of 3DAWCs was also simultaneously measured with the two-probe method during three-point bending tests. Combining side image and digital image correlation (DIC) technology, we found that the bending strength and modulus deteriorated rapidly during thermo-oxidative aging. The strain distribution and progressive bending damage modes also changed significantly, i.e., a symmetrical strain distribution for the unaged specimens, while the existing interface cracks of the aged specimen changed this symmetry. The electrical resistance method (ERM) effectively identified the early-stage damages, and the first derivative of the rate of resistance change (FDC) revealed differences in the progressive damage modes of aged and unaged specimens.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3