Semiempirical approach to predict shrinkage and warpage of fiber-reinforced polymers using measured material properties in finite element model

Author:

Gandhi Umesh1,Song Yu Yang1,Mandapati Raghuram1

Affiliation:

1. Toyota Research Institute North America, Ann Arbor, MI, USA

Abstract

The automotive industry has great interest in designing and producing lightweight high-performance components using fiber-reinforced polymers (FRPs), primarily due to their high specific strengths. Injection molding of FRP is one of the preferred processes to meet low-cost, high-volume objectives. It is imperative to account for shrinkage and warpage while designing the tools for injection molding. However, predicting shrinkage and warpage of injection-molded FRP parts remains a challenge. This is because both the structural and thermal properties depend on the condition of the fibers in the resin, that is, variation in the orientation, length, and concentration throughout the part. Additional challenges come from the fact that the material properties of polymers are a function of temperature, which varies as the parts cool. In this study, we are presenting a finite element-based semiempirical approach to address both these challenges and predict warpage due to cooling for a fiber-reinforced resin component in solid phase. The approach is demonstrated to predict warpage of an injection-molded flat plaque made of glass fiber-reinforced polypropylene, cooled from 160°C to room temperature of 23°C. First, the fiber orientation in the plaque is estimated. Next the material properties for the combined material, that is, glass and resin, are measured as a function of temperature. Then the combined material properties and calculated fiber orientations are used to estimate the ‘in-mold’ condition resin properties using reverse engineering. Finally, the warpage of the plaque is predicted using the estimated resin properties and fiber orientations. Warpage predictions using this method compare well with the measured experimental results. Our study demonstrates that valid predictions for shrinkage and warpage of injection-molded fiber-reinforced thermoplastic parts in solid phase can be made if accurate material properties are used.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3