Abstract
This study focuses on applying intelligent modeling methods to different injection molding process parameters, to analyze the influence of temperature distribution and warpage on the actual development of auto locks. It explores the auto locks using computer-aided engineering (CAE) simulation performance analysis and the optimization of process parameters by combining multiple quality characteristics (warpage and average temperature). In this experimental design, combinations were explored for each single objective optimization process parameter, using the Taguchi robust design process, with the L18 (21 × 37) orthogonal table. The control factors were injection time, material temperature, mold temperature, injection pressure, packing pressure, packing time, cooling liquid, and cooling temperature. The warpage and temperature distribution were analysed as performance indices. Then, signal-to-noise ratios (S/N ratios) were calculated. Gray correlation analysis, with normalization of the S/N ratio, was used to obtain the gray correlation coefficient, which was substituted into the fuzzy theory to obtain the multiple performance characteristic index. The maximum multiple performance characteristic index was used to find multiple quality characteristic-optimized process parameters. The optimal injection molding process parameters with single objective are a warpage of 0.783 mm and an average temperature of 235.23 °C. The optimal parameters with multi-objective are a warpage of 0.753 mm and an average temperature of 238.71 °C. The optimal parameters were then used to explore the different cooling designs (original cooling, square cooling, and conformal cooling), considering the effect of the plastics temperature distribution and warpage. The results showed that, based on the design of the different cooling systems, conformal cooling obtained an optimal warpage of 0.661 mm and a temperature of 237.62 °C. Furthermore, the conformal cooling system is smaller than the original cooling system; it reduces the warpage by 12.2%, and the average temperature by 0.46%.
Funder
Ministry of Science and Technology, Taiwan
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献