Damage detection in composites using non-destructive testing aided by ANN technique: A review

Author:

Saha Neetika1ORCID,Roy Parikshit1ORCID,Topdar Pijush1ORCID

Affiliation:

1. Civil Engineering Department, National Institute of Technology, Durgapur, India

Abstract

Damages are inevitable in structures and effective damage detection techniques are important for maintaining their health. Many weight-sensitive engineering applications use composite materials, especially fiber-reinforced laminates. Common damages of these materials include delamination, fiber breakage, fiber pull-out, etc. Various non-destructive testing (NDT) techniques are reported in the literature for damage detection in composites, such as ultrasonic testing, vibration-based techniques, acoustic emission technique, optical NDT and imagining techniques. However, due to the complex properties of composite materials, conventional techniques for analyzing NDT data are difficult to implement. In this context, artificial neural network (ANN) technique is a promising alternative for analyzing NDT data for damage detection. In this study, an attempt is made to explore the state-of-the-art of damage detection in composites using NDT aided by ANN. The work discusses the pros and cons of different methods and is expected to help in identifying the appropriate method for damage detection in composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3