Damage assessment of laminated composites using unsupervised autonomous features

Author:

Khan Asif1ORCID,Kim Heung Soo2

Affiliation:

1. Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi Khyber Pakhtunkhwa, Pakistan

2. Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Korea

Abstract

This article proposes a framework for the damage assessment of and effect of temperature variations in laminated composites using Lamb waves and unsupervised autonomous features. A network of piezoelectric transducers is employed to generate data for 18 health states of a laminated composite plate. The data is processed with sparse autoencoder (SAE) for unsupervised autonomous features. The discriminative capabilities of the extracted features are confirmed by processing the feature space in the supervised and unsupervised frameworks of machine learning. The confusion matrices of supervised learning provided physical insights into the problem. The feature space was also visualized in two dimensions in an unsupervised manner through principal component analysis (PCA), which revealed physically consistent results for the effect of temperature variations, damage of different severity levels, and the undamaged paths between the actuator and sensors. The healthy state data and information on the paths between the actuator and sensors was processed via SAE for damage localization. The proposed approach can be employed for the autonomous assessment of composite structures for the presence of damage and variations of operating temperatures while using both supervised and unsupervised machine learning algorithms.

Funder

National Research Foundation

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3