Comparison of mechanical and morphological properties of 3-D printed functional prototypes: Multi and hybrid blended thermoplastic matrix

Author:

Kumar Sudhir1ORCID,Singh Rupinder23ORCID,Singh TP1,Batish Ajay1

Affiliation:

1. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

2. Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India

3. Department of Mechanical Engineering, National Institute of Technical Teachers Training & Research, Chandigarh, India

Abstract

This article reports the comparison for mechanical and morphological properties of 3-D printed tensile specimen with fused deposition modeling by using multiblended and hybrid blended polylactic acid (PLA) matrix. The multiblended PLA matrix was 3-D printed as tensile specimen (as per American Society for Testing and Materials 638 type IV) comprising of 06 layers (01 layer PLA + 01 layer of PLA + polyvinyl chloride + 02 layers of PLA + wood powder + 02 layers of PLA + Fe3O4) each with layer thickness of 0.53 mm. The hybrid blended PLA matrix was also 3-D printed with similar dimensions and printing conditions. The composition/proportion of hybrid blended and multimaterial blended matrix has been selected on the basis of similar melt flow index (MFI) range and the final matrix was compared on basis of equal number of layers (06), similar rheological range (MFI: 40–45 g/10 min) and volume of product (same dimension of prototype). The results of study suggested that the 3-D printed functional prototype of multiblended PLA matrix has better mechanical and morphological properties than hybrid blended PLA matrix. The peak strength and break strength of hybrid blend-based prototype were observed to be 29.56 MPa and 26.60 MPa, respectively, whereas for the multimaterial-based functional prototypes, it was 46.28 MPa and 41.65 MPa, respectively. The results are also supported with scanning electron microscopy-based images, 3-D rendered images, and energy-dispersive X-ray analysis analysis.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3