Toughness Enhancement of PLA-Based Filaments for Material Extrusion 3D Printing

Author:

Pongsathit Siriwan1,Kamaisoom Jutamas1,Rungteerabandit Atikarn1,Opaprakasit Pakorn2,Jiamjiroch Krit3,Pattamaprom Cattaleeya1ORCID

Affiliation:

1. Research Unit in Polymer Rheology and Processing, Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand

2. School of Integrated Science and Innovation, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12120, Thailand

3. Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand

Abstract

Poly(lactic acid) (PLA) is one of the most popular biodegradable thermoplastics in the market of 3D printing filaments used in the material extrusion (ME) technique. This is because it can be printed easily at low temperatures. However, its inherent brittleness limits its use in many applications. In this work, the toughness of PLA filament was improved by blending with various types of rubbers including natural rubber (NR), acrylic core–shell rubber (CSR), and thermoplastic polyurethane (TPU) in the amount of 15% by weight. PLA/TPU filament was found to have the smoothest surface with the best shape and dimension stability, while PLA/NR filament rendered the highest tensile toughness. In term of the effect of printing temperature, the highest printing temperature in this study (210°C) provided the highest smoothness with the best shape stability and dimension accuracy. Interestingly, the tensile toughness and elongation at break of 3D printed specimens were found to be higher than those of compression-molded specimens for all filament types. This could be explained by the ability of the 3D printing technique to produce specimens that aligned in the printing direction in a fiber-like pattern.

Funder

Thammasat University

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3