The synergistic flame retardancy of modified expandable graphite and metal hydroxides on HDPE/EVA composites

Author:

Guo Xincheng1,Liu Nian1,Li Lingtong1,Bai Zhuyu1,Chen Xiaolang12ORCID,Zhou Dengfeng3,Qin Jun4,Zhang Kun1,Lu Zongcheng2

Affiliation:

1. Key Laboratory of Advanced Materials Technology, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China

2. Sichuan Jiahe Copoly Technology Co., Ltd., Guiyang, China

3. Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang, China

4. Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, Guizhou University, Guiyang, China

Abstract

In this article, the flammable behaviors and synergistic effects of modified expanded graphite (MEG) with zinc borate (ZB) on flame-retardant high-density polyethylene/ethylene vinyl acetate (HDPE/EVA) composites containing magnesium hydroxide (MH) and aluminum hydroxide (ATH) are investigated by the Underwriters Laboratories-94 (UL-94) test, limiting oxygen index (LOI), cone calorimeter test (CCT), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), differential scanning calorimetry, and tensile tests. The LOI, UL-94, and CCT results show that the synergistic effect of MEG and ZB can improve the flame retardancy of the composites. With the addition of ZB and MEG, the LOI value increases, and the UL-94 reaches the V-0 rating. The heat release rate and total heat release decrease, respectively. The data obtained from the TGA indicate that the synergistic effects of ZB with MEG increase the decomposition temperature when 2 phr ZB and 8 phr MEG are added into the composites. The data from FTIR show that HMEG8 and HMEG10 composites produce phosphate at high temperatures, which promotes the formation of stable and compact charred layer. All the results show that ZB and MEG have positive synergistic effects on HDPE/EVA composites containing MH and ATH. However, ZB and MEG play a negative role in the tensile properties of the HDPE/EVA composites.

Funder

Guizhou Provincial Higher Education Engineering Research Center

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3