Affiliation:
1. Simulation Engineering, BASF India Ltd, Mumbai, India
2. General Engineering Department, Institute of Chemical Technology, Mumbai, India
Abstract
Injection molding is one of the preliminary production methods for plastic components. Typically, injection molding Moldflow simulations predicts potential issues like air void, weld-line, warpage etc. This work focuses on weld-line defect, which occurs when two or more flow fronts are meets each other during filling of the cavity. Most of the commercial algorithms are based on isotropic and homogeneous material assumptions however plastic materials are anisotropic and heterogeneous in nature. Therefore, accuracy with isotropic solvers may vary with actual reality. To consider material anisotropy and heterogeneous nature of the material, an integrative simulation is advantageous technology which gives more realistic results. A unique approach of integrative simulations has been used in this work to predict the strength of the weld-line as there is no direct standard procedure or software available to get weld-line strength. Moldflow simulation is performed on specially designed plaque wherein the weld-line is reproduced considering 30% glass-filled polyamide-6 material. The new material model is developed by mapping the structural model of tensile specimens on the Moldflow simulated plaque with integrative mapping approach. The mapped model considers fiber orientation and weld-line characteristics of the material which is then solved in the Abaqus structural solver. Experimental validation is performed by manufacturing of weld-line plaques, specimen preparation, and experimental testing. The results correlation is done for an isotropic and anisotropic material model with experimental results. The correlation study shows, a significant difference in results for isotropic simulation and integrative anisotropic simulations. The failure pattern and load-displacement behavior of integrative simulation is close match with experimental results with minimum 93% accuracy.
Subject
Condensed Matter Physics,Ceramics and Composites