Weld line strength factors in a reinforced injection molded part: Relationship with predicted fiber orientation

Author:

Quintana Maria C1ORCID,Frontini Patricia1

Affiliation:

1. Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata, Buenos Aires, Argentina

Abstract

In this work, the residual strength of a fiber-reinforced injection molded part containing a hot weld line—or meld line—was evaluated. Injected plates were generated using a double-gated mold under four different process conditions. Quantification of the weld line detrimental effect was made in base on a fracture mechanics experiment. Specimens with and without the weld line—obtained from the same plates—were tested under a clamped single edge notched tension (SENT) configuration. For each set of process conditions, a relative weld line strength factor was defined in terms of the maximum applied stress intensity factor (KImax) as: KImax of specimens with weld line/KImax of specimens without weld line. In parallel, the fiber distribution pattern was obtained by process simulation software Moldex3D. An orientation factor was determined from simulation in order to quantify the effect of the local fiber orientation around the weld line. Optimal process condition and the most significant variable influencing the weld line strength were calculated via statistical analysis. Results showed a clear correlation between the weld line strenght factors and the orientaion factor. It was demonstrated that the fracture performance of the weld line region is controlled by the fiber orientation arrangement developed on that zone.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3