Effects of carbon-based nanofillers on mechanical, electrical, and thermal properties of bast fiber reinforced polymer composites

Author:

Syduzzaman Md1ORCID,Chowdhury Kawser Parveen2,Fahmi Fahmida Faiza3,Rumi Shaida Sultana2,Hassan Abir1

Affiliation:

1. Department of Textile Engineering Management, Bangladesh University of Textiles, Dhaka, Bangladesh

2. Department of Wet Processing Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh

3. Department of Textile Engineering, Primeasia University, Dhaka, Bangladesh

Abstract

Bast fiber-reinforced polymer composites (BFRPs) are grabbing considerable research attention due to their assertive impact on the environment and excellence in biodegradability. Though BFRPs have excellent ecological performance factors, they also lack in some cases, such as lower mechanical, electrical, and thermal properties, due to the significant moisture absorption, minimal thermal stability, and inherent nature of bast fibers. BFRPs exhibit weaker fiber/matrix interfacial adhesion as compared to synthetic fiber-reinforced polymer composites, resulting in lower mechanical properties. Nowadays, a wide variety of fiber and matrix modification techniques are practiced improving the fiber-matrix interaction, which ultimately improves the mechanical properties. Among the fiber and matrix modification techniques, nanofiller integration is the most promising one. This study reviews the impacts of introducing carbon-based nanofillers, particularly graphene and carbon nanotubes (CNT), in diversified BFRPs. The influence of carbon-based nanofillers on the mechanical, electrical, and thermal behavior of BFRPs and their potential prospects are comprehensively reviewed. The paper concludes with the challenges and difficulties in composite processing, along with the techniques for overcoming them.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3