Affiliation:
1. Department of Textile Engineering Management, Bangladesh University of Textiles, Dhaka, Bangladesh
2. Department of Wet Processing Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
3. Department of Textile Engineering, Primeasia University, Dhaka, Bangladesh
Abstract
Bast fiber-reinforced polymer composites (BFRPs) are grabbing considerable research attention due to their assertive impact on the environment and excellence in biodegradability. Though BFRPs have excellent ecological performance factors, they also lack in some cases, such as lower mechanical, electrical, and thermal properties, due to the significant moisture absorption, minimal thermal stability, and inherent nature of bast fibers. BFRPs exhibit weaker fiber/matrix interfacial adhesion as compared to synthetic fiber-reinforced polymer composites, resulting in lower mechanical properties. Nowadays, a wide variety of fiber and matrix modification techniques are practiced improving the fiber-matrix interaction, which ultimately improves the mechanical properties. Among the fiber and matrix modification techniques, nanofiller integration is the most promising one. This study reviews the impacts of introducing carbon-based nanofillers, particularly graphene and carbon nanotubes (CNT), in diversified BFRPs. The influence of carbon-based nanofillers on the mechanical, electrical, and thermal behavior of BFRPs and their potential prospects are comprehensively reviewed. The paper concludes with the challenges and difficulties in composite processing, along with the techniques for overcoming them.
Subject
Condensed Matter Physics,Ceramics and Composites
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献