Effects of Nanofillers and Synergistic Action of Carbon Black/Nanoclay Hybrid Fillers in Chlorobutyl Rubber

Author:

Joseph Tomy Muringayil1ORCID,Maria Hanna J.2ORCID,Thomas Martin George2ORCID,Haponiuk Józef T.1ORCID,Thomas Sabu345ORCID

Affiliation:

1. Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland

2. School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India

3. School of Energy Materials, Inter University Centre for Nanoscience and Technology (IIUCNN), Mahatma Gandhi University, Kottayam 686560, Kerala, India

4. Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg P.O. Box 17011, South Africa

5. Trivandrum Engineering Science & Technology Research Park, TC-4/2322, GEM Building, Sreekariyam, Trivandrum 695016, Kerala, India

Abstract

Nanocomposites based on chlorobutyl rubber (CIIR) have been made using a variety of nanofillers such as carbon black (CB), nanoclay (NC), graphene oxide (GO), and carbon black/nanoclay hybrid filler systems. The hybrid combinations of CB/nanoclay are being employed in the research to examine the additive impacts on the final characteristics of nanocomposites. Atomic force microscopy (AFM), together with resistivity values and mechanical property measurements, have been used to characterise the structural composition of CIIR-based nanocomposites. AFM results indicate that the addition of nanoclay into CIIR increased the surface roughness of the material, which made the material more adhesive. The study found a significant decrease in resistivity in CIIR–nanoclay-based composites and hybrid compositions with nanoclay and CB. The higher resistivity in CB composites, compared to CB/nanoclay, suggests that nanoclay enhances the conductive network of carbon black. However, GO-incorporated composites failed to create conductive networks, which this may have been due to the agglomeration. The study also found that the modulus values at 100%, 200%, and 300% elongation are the highest for clay and CB/clay systems. The findings show that nanocomposites, particularly clay and clay/CB hybrid nanocomposites, may produce polymer nanocomposites with high electrical conductivity. Mechanical properties correlated well with the reinforcement provided by nanoclay. Hybrid nanocomposites with clay/CB had increased mechanical properties because of their enhanced compatibility and higher filler–rubber interaction. Nano-dispersed clay helps prevent fracture growth and enhances mechanical properties even more so than CB.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3