Mechanical, thermal, and interfacial shear properties of polyamide/nanoclay nanocomposites

Author:

Gabr Mohamed H12,Uzawa Kiyoshi1

Affiliation:

1. Innovative composite center (ICC), Kanazawa Institute of Technology, Nonoichi, Japan

2. Faculty of Industrial Education, Sohag University, Sohag Governorate, Egypt

Abstract

There are increasing interests in using thermoplastics to replace thermosets to laminate fabrication due to their advantages such as high toughness, shorter manufacturing cycles, and reprocessing possibilities. The aim of the current study is to select appropriate thermoplastic nanocomposites, which fit the requirements of carbon fiber (CF) composites in the automotive industry. In order to achieve the target, this research has investigated the effect of nanoclay on the mechanical, thermal, and interfacial properties with de-sized CF of polyamide (PA6) composites. PA6/clay composites were characterized by different properties, namely, bending, tensile, impact, heat distortion temperature, interfacial shear stress, and scanning electron microscope. The micromechanism of plastic deformation after bending failure of PA6-clay nanocomposites is examined with different contents of nanoclay to correlate the microstructures with the mechanical properties. The results revealed that with 3% organo-clay filler content, flexural strength and modulus improved significantly by 42% and 52%, respectively, which could be explained by scanning electron microscopy images that show rougher fracture surface with adding clay into the PA6 matrix. The increased surface roughness implies that the path of the crack tip is distorted because of the silicate nano-layer, making crack propagation more difficult. The interfacial shear strength for 1 wt% of nanoclay was about the same as the neat PA6 but decrease dramatically with increasing contents of nanoclay.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3