Nanofiller‐and basalt fiber‐reinforced recycled polyamide 6 hybrid composites

Author:

Ahlatli Osman12ORCID,Bozkurt Ömer Yavuz2ORCID,Erkliğ Ahmet2ORCID,Kiziltas Alper3ORCID,Gardner Douglas J.45

Affiliation:

1. Temsan Makina ve Tekstil San. Tic. A.Ş R&D Center, OSB Turkey

2. Faculty of Engineering, Mechanical Engineering Department Gaziantep University Gaziantep Turkey

3. Cellventure Inc. Dearborn Michigan USA

4. Advanced Structures and Composites Center University of Maine Orono Maine USA

5. School of Forest Resources University of Maine Orono Maine USA

Abstract

AbstractThe influence of nanofillers (cellulose nanofibers (CNF) and halloysite nanotubes (HNTs)), and basalt fibers (BF) on the morphology, mechanical and thermal of recycled polyamide 6 (PA6) composites were investigated through scanning electron microscopy (SEM), mechanical testing, rotational rheometry, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). CNF, HNTs and BF were relatively well‐dispersed in the PA6 matrix and the incorporation of these nanofillers and BF increased the strength of the matrix, which indicates a good dispersion of the nanofillers and BF. CNF and HNTs‐filled PA6 nanocomposites increased the tnsile strength by 14% and 6% compared to the neat PA6, respectively. The composites elongation at break decreased with nanofiller, BF and combined nanofillers and BF. The shear storage modulus values of PA6/20B5C, PA6/20B5H, and PA6/25B are significantly elevated compared to neat PA6, with increases of 3.7, 2.8, and 2.5 times, respectively, at an angular frequency of 100 rad/s. PA6/20B5H composites with 20 wt.% BF and 5 wt.% HNTs exhibited the highest storage modulus (9.5 GPa) from the DMA study. Thermal stability and ash content at 800°C increased with the incorporation of HNTs and BF. The DSC findings showed that the glass transition (Tg) and melting temperature (Tm) of the composites did not exhibit any notable changes when nanofillers and BF were added to the resin. The nucleation ability of PA6 was enhanced attributable to BF and hybridization of BF and nanofillers since the crystallization temperatures of PA6 in BF filled and hybrid composites were around 5°C greater than neat PA6. The results suggest hybrid composites with potential environmental characteristics and higher mechanical properties can be utilized in semi‐structural applications in automotive and construction as a sustainable and lightweight alternative to steel and other materials.Highlights The addition of HNTs, CNF, BF and hybridization of nanofillers with BF reduced the brittleness of PA6. Nanoreinforced and hybrid PA6 composites achieved higher storage modulus than neat PA6. Thermal stability and ash content increased with the incorporation of HNTs and BF. The hybrid composites have a higher complex viscosity compared to PA6. The sustainable hybrid composites can be utilized in automotive and construction industries.

Funder

Maine Agricultural and Forest Experiment Station

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3