Modelling Leachate Quality and Quantity in Municipal Solid Waste Landfills

Author:

Yildiz Ebru Demirekler1,Ünlü Kahraman1,Rowe R. Kerry2

Affiliation:

1. Environmental Engineering Department, Middle East Technical University, Ankara, Turkey

2. Civil Engineering Department, Queen’s University, Kingston, ON, Canada

Abstract

The operational phase of landfills may last for 20 years or more. Significant changes in leachate quality and generation rate may occur during this operational period. A mathematical model has been developed to simulate the landfill leachate behaviour and distributions of moisture and leachate constituents through the landfill, taking into consideration the effects of time-dependent landfill development on the hydraulic characteristics of waste and composition of leachate. The model incorporates governing equations that describe processes influencing the leachate production and biochemical processes taking place during the stabilization of wastes, including leachate flow, dissolution, acidogenesis and methanogenesis. To model the hydraulic property changes occurring during the development stage of the landfills, a conceptual modelling approach was proposed. This approach considers the landfill to consist of cells or columns of cells, which are constructed at different times, and considers each cell in the landfill to consist of several layers. Each layer is assumed to be a completely mixed reactor containing uniformly distributed solid waste, moisture, gases and micro-organisms. The use of the proposed conceptual model enables the incorporation of the spatial changes in hydraulic properties of the landfill into the model and also makes it possible to predict the spatial and temporal distributions of moisture and leachate constituents. The model was calibrated and partially verified using leachate data from Keele Valley Landfill in Ontario, Canada and data obtained from the literature. Ranges of values were proposed for model parameters applicable for real landfill conditions.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3