Vadose zone perspectives in global arsenic research: A review and future opportunities

Author:

van Genuchten C. M.1ORCID,Wang K.1,Jakobsen R.1ORCID

Affiliation:

1. Department of Geochemistry Geological Survey of Denmark and Greenland (GEUS) Copenhagen Denmark

Abstract

AbstractFew contaminants have been linked to more devastating human health and environmental impacts than carcinogenic arsenic (As). Geogenic As contamination of groundwater used as a drinking water source continues to threaten hundreds of millions of lives worldwide, with the As crisis in South and Southeast Asia often called “the largest mass poisoning in history.” In addition, anthropogenic As pollution derived from industrial activities (e.g., mining and smelting processes, wood preservation, and historic pesticide use) has created large sites of intensely contaminated soils and water bodies that urgently require remediation. Because of its profound negative impacts on environmental quality, As has also been the focus of considerable scientific research. In particular, vadose zone research, which aims to understand fluid flow and contaminant transport in variably saturated porous media, has been critical to identify sources of As contamination, predict the fate of As in natural and engineered systems, and help guide regulatory agencies, policymakers, and practitioners to minimize As impacts. In this work, we review several key topics in global As research that have been advanced by vadose zone knowledge. These topics include the release of geogenic As to groundwater, the remediation of anthropogenic As contamination, and the design and operation of As treatment systems. We end this review by highlighting urgent and important knowledge gaps in As research that can benefit from a more rigorous understanding of vadose zone processes.

Funder

Danmarks Frie Forskningsfond

Geocenter Danmark

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3