Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes

Author:

Coskuner Gulnur1,Jassim Majeed S1ORCID,Zontul Metin2,Karateke Seda3

Affiliation:

1. Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain

2. Department of Computer Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Turkey

3. Department of Mathematics and Computer Science, Faculty of Science and Letters, Istanbul Arel University, Turkey

Abstract

Reliable prediction of municipal solid waste (MSW) generation rates is a significant element of planning and implementation of sustainable solid waste management strategies. In this study, the multi-layer perceptron artificial neural network (MLP-ANN) is applied to verify the prediction of annual generation rates of domestic, commercial and construction and demolition (C&D) wastes from the year 1997 to 2016 in Askar Landfill site in the Kingdom of Bahrain. The proposed robust predictive models incorporated selected explanatory variables to reflect the influence of social, demographical, economic, geographical and touristic factors upon waste generation rates (WGRs). The Mean Squared Error (MSE) and coefficient of determination ( R2) are used as performance indicators to evaluate effectiveness of the developed models. MLP-ANN models exhibited strong accuracy in predictions with high R2 and low MSE values. The R2 values for domestic, commercial and C&D wastes are 0.95, 0.99 and 0.91, respectively. Our results show that the developed MLP-ANN models are effective for the prediction of WGRs from different sources and could be considered as a cost-effective approach for planning integrated MSW management systems.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3