Optimal Machine Learning Model to Predict Demolition Waste Generation for a Circular Economy

Author:

Cha Gi-Wook1ORCID,Park Choon-Wook2,Kim Young-Chan3

Affiliation:

1. Academic-Research Digital Convergence Scale-Up Platform Center, Kyungpook National University, Daegu 41566, Republic of Korea

2. Industry Academic Cooperation Foundation, Kyungpook National University, Daegu 41566, Republic of Korea

3. Division of Smart Safety Engineering, Dongguk University Wise Campus, Gyeongju 38066, Republic of Korea

Abstract

A suitable waste-management strategy is crucial for a sustainable and efficient circular economy in the construction sector, and it requires precise data on the volume of demolition waste (DW) generated. Therefore, we developed an optimal machine learning model to forecast the quantity of recycling and landfill waste based on the characteristics of DW. We constructed a dataset comprising information on the characteristics of 150 buildings, demolition equipment utilized, and volume of five waste types generated (i.e., recyclable mineral, recyclable combustible, landfill specified, landfill mix waste, and recyclable minerals). We applied an artificial neural network, decision tree, gradient boosting machine, k-nearest neighbors, linear regression, random forest, and support vector regression. Further, we derived the optimal model through data preprocessing, input variable selection, and hyperparameter tuning. In both the validation and test phases, the “recyclable mineral waste” and “recyclable combustible waste” models achieved accuracies (R2) of 0.987 and 0.972, respectively. The “recyclable metals” and “landfill specified waste” models achieved accuracies (R2) of 0.953 and 0.858 or higher, respectively. Moreover, the “landfill mix waste” model exhibited an accuracy of 0.984 or higher. This study confirmed through Shapley Additive exPlanations analysis that the floor area is the most important input variable in the four models (i.e., recyclable mineral waste, recyclable combustible waste, recyclable metals, and landfill mix waste). Additionally, the type of equipment employed in demolition emerged as another crucial input variable impacting the volume of recycling and landfill waste generated. The results of this study can provide more detailed information on the generation of recycling and landfill waste. The developed model can provide precise data on waste management, thereby facilitating the decision-making process for industry professionals.

Funder

Commercialization Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korean government

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3