Food waste bioconversion into new food: A mini-review on nutrients circularity in the production of mushrooms, microalgae and insects

Author:

Girotto Francesca1ORCID,Piazza Laura1

Affiliation:

1. Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy

Abstract

The global challenge of feeding an ever-increasing world population is leading scientists’ attention towards nutritious and sustainable foods whose production should have low impacts on environment, economy and society. In case the input feedstock can be waste nutrients, the label of such productions becomes even greener. Nutrients circularity is nowadays an important circular economy practice. This mini-review focuses on the valorisation of food waste as precious biomass to grow new food and feed. In particular, three functional edibles are discussed in the present paper: mushrooms, microalgae and insects. These foods are part of people diets since ages in certain areas of the world and the original aspect of their cultivation and breeding found on waste nutrients recovery is here reviewed. Proofs of such food waste biorefinery viability are already given by several researches featuring the main traits of a suitable growing medium: optimal pool of nutrients and optimal pH. However, lot of work still needs to be done in order to assess the optimal growth and cultivation conditions and the health security of the harvested/bred edibles. A SWOT factors analysis was performed.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3