Affiliation:
1. Brown School, Washington University, St Louis, MO, USA
2. School of Medicine, Washington University, St Louis, MO, USA
3. Department of Kinesiology, Dalian University of Technology, Dalian, China
Abstract
Background Nuts are nutrient-dense foods that contribute to healthier eating. Food image datasets enable artificial intelligence (AI) powered diet-tracking apps to help people monitor daily eating patterns. Aim This study aimed to create an image dataset of commonly consumed nut types and use it to build an AI computer vision model to automate nut type classification tasks. Methods iPhone 11 was used to take photos of 11 nut types—almond, brazil nut, cashew, chestnut, hazelnut, macadamia, peanut, pecan, pine nut, pistachio, and walnut. The dataset contains 2200 images, 200 per nut type. The dataset was randomly split into the training (60% or 1320 images), validation (20% or 440 images), and test sets (20% or 440 images). A neural network model was constructed and trained using transfer learning and other computer vision techniques—data augmentation, mixup, normalization, label smoothing, and learning rate optimization. Results The trained neural network model correctly predicted 338 out of 440 images (40 per nut type) in the validation set, achieving 99.55% accuracy. Moreover, the model classified the 440 images in the test set with 100% accuracy. Conclusion This study built a nut image dataset and used it to train a neural network model to classify images by nut type. The model achieved near-perfect accuracy on the validation and test sets, demonstrating the feasibility of automating nut type classification using smartphone photos. Being made open-source, the dataset and model can assist the development of diet-tracking apps that facilitate users’ adoption and adherence to a healthy diet.
Subject
Nutrition and Dietetics,General Medicine,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献