Öznitelik Seviyesinde Füzyon Yaklaşımının Kuruyemiş Tür Sınıflandırılmasında Performans Değerlendirmesi
-
Published:2022-12-21
Issue:
Volume:
Page:
-
ISSN:2148-2683
-
Container-title:European Journal of Science and Technology
-
language:tr
-
Short-container-title:EJOSAT
Author:
ATBAN Furkan1, İLHAN Hamza Osman2ORCID
Affiliation:
1. SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ 2. YILDIZ TEKNİK ÜNİVERSİTESİ
Abstract
Önerilen çalışma, derin öğrenme ağ mimarilerinden ResNet50 ve DenseNet201 ağlarının öğrenme aktarımı kapsamında 11 sınıflı kuruyemiş görüntülerinden oluşan veri setinden anlamlı özelliklerin çıkarılmasında kullanılmasını ve elde edilen özellik kümeleri üzerinden karar destek makineleri ile ürünlerin yüksek doğrulukta sınıflandırılmasını araştırmaktadır. Ayrıca çalışma kapsamında özellik seviyesi füzyonu yaklaşımıyla, iki farklı ön eğitimli ağdan elde edilen özelliklerin birleştirilmesi ile oluşturulan yeni özellik veri kümesinin, sınıflandırılma performansına olan etkisi de incelenmiştir. Sonuçların validasyonu için deneyler 5 katlı çapraz doğrulama tekniği kapsamında gerçekleştirilmiştir. Sınıflandırma sonuçları incelendiğinde, ResNet50 ve DenseNet201, Füzyon mimarileri kullanılarak çıkarılan özelliklerin doğrusal çekirdekli karar destek makineleri ile sınıflandırılması neticesinde sırasıyla %97,86, %98,09 ve %98,68 sınıflandırma doğrulukları elde edilmiştir.
Publisher
European Journal of Science and Technology
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference13 articles.
1. Ecemiş, İ. N., & İlhan, H. O. (2023). The performance comparison of pre-trained networks with the proposed lightweight convolutional neural network for disease detection in tomato leaves. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(2), 693-705. 2. Vidyarthi, S. K., Singh, S. K., Tiwari, R., Xiao, H. W., & Rai, R. (2020). Classification of first quality fancy cashew kernels using four deep convolutional neural network models. Journal of Food Process Engineering, 43(12), e13552. 3. Dheir, I. M., Mettleq, A. S. A., Elsharif, A. A., & Abu-Naser, S. S. (2020). Classifying nuts types using convolutional neural network. International Journal of Academic Information Systems Research (IJAISR), 3(12). 4. Costa, L., Ampatzidis, Y., Rohla, C., Maness, N., Cheary, B., & Zhang, L. (2021). Measuring pecan nut growth utilizing machine vision and deep learning for the better understanding of the fruit growth curve. Computers and Electronics in Agriculture, 181, 105964. 5. Wang, B., Li, H., You, J., Chen, X., Yuan, X., & Feng, X. (2022). Fusing deep learning features of triplet leaf image patterns to boost soybean cultivar identification. Computers and Electronics in Agriculture, 197, 106914.
|
|