Observation of reactive shear layer modulation associated with high-frequency transverse thermoacoustic oscillations in a gas turbine reheat combustor experiment

Author:

McClure Jonathan1ORCID,Berger Frederik M.1,Bertsch Michael1,Schuermans Bruno2ORCID,Sattelmayer Thomas1

Affiliation:

1. Lehrstuhl für Thermodynamik, Technische Universität München, D-85748 Garching, Germany

2. Institute for Advanced Study, Technische Universität München, D-85748 Garching, Germany

Abstract

This paper presents the investigation of high-frequency thermoacoustic oscillations and associated flame dynamics in an experimental gas turbine reheat combustor at atmospheric pressure. Examination of dynamic pressure measurements reveals bursts of high-frequency periodic oscillations which appear randomly amidst stochastic fluctuations in the reheat combustor. Analysis of the flame dynamics during these bursts of periodic behaviour reveals that increased heat release in the reactive shear layers of the reheat flame is associated with greater thermoacoustic driving potential. This redistribution of heat release is likely due to the stochastic nature of auto-ignition kernel formation. To determine the underlying flame-acoustic coupling mechanism behind the driving potential, phase-resolved flame dynamics over the acoustic cycle are investigated which reveal the presence of an oscillatory heat release pattern associated with the first transverse eigenmode. An in-phase interaction between the acoustic field and these heat release oscillations in the shear layer regions indicates that this phenomenon likely constitutes a thermoacoustic driving mechanism. This is an important step towards the development of models for high-frequency thermoacoustic driving mechanisms relevant to reheat combustion systems, which will allow accurate prediction and mitigation of thermoacoustic instabilities in future designs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3