Experimental Investigation of High Frequency Flame Response on Injector Coupling in a Perfectly Premixed Multi-Jet Combustor

Author:

Rosenkranz Jan-Andre1,Sattelmayer Thomas1

Affiliation:

1. Chair of Thermodynamics, Department of Engineering Physics and Computation, Technical University of Munich , Garching 85748, Bavaria, Germany

Abstract

Abstract High frequency injector-coupled thermoacoustic instabilities are a major threat to multi-jet combustors in rocket and gas turbine engines. The complex three-dimensional acoustic coupling between the combustion chamber and injector acoustics cause local fluctuations in heat release. In turn, multiple thermoacoustic feedback mechanisms close the thermoacoustic loop and serve as a source of the thermoacoustic instability. Except for the flame deformation and flame displacement mechanism, the underlying feedback mechanisms for high frequency instabilities are to a large extent unknown. The paper at hand gives new insights into the injector-coupled convective driving mechanisms that are present in multi-jet combustors at perfectly premixed conditions. The forced flame response to the first transverse combustor mode is investigated for two distinct injector tube lengths: one with an axial acoustic velocity node and one with a velocity antinode coupling at the injector–combustor interface. Phase locked OH* images reveal convectively transported coherent vortex structures as the main source of the flame response. The origin of the flame response can be linked to the axial acoustic velocity at the injector–combustor interface using numerical simulations. Both configurations show a clear oscillation of the heat release fluctuations in-phase with the acoustic pressure fluctuations. In similarity to time delay models in low frequency thermoacoustics, a wave number model is proposed to estimate the local flame response due to feed flow modulations and validated with the experimental results.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference28 articles.

1. Liquid Propellant Rocket Combustion Instability,1972

2. Advanced Combustion System for High Efficiency (ACE) of the New SGT/6-9000HL Gas Turbine,2022

3. High-Frequency Transverse Combustion Instabilities of Lean-Premixed Multislit Hydrogen-Air Flames;Combust. Flame,2022

4. A Selective Fast Fourier Filtering Approach Applied to High Frequency Thermoacoustic Instability Analysis,2017

5. Identification of High-Frequency Transverse Acoustic Modes in Multi-Nozzle Can Combustors,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3