Thermo-acoustic cross-talk between cans in a can-annular combustor

Author:

Farisco Federica1,Panek Lukasz1,Kok Jim BW2

Affiliation:

1. Siemens AG – Section Energy, Berlin, Germany

2. University of Twente, CTW/Thermal Engineering, Enschede, The Netherlands

Abstract

Thermo-acoustic instabilities in gas turbine engines are studied to avoid engine failure. Compared to the engines with annular combustors, the can-annular combustor design should be less vulnerable to acoustic burner-to-burner interaction, since the burners are acoustically coupled only by the turbine stator stage and the plenum. However, non-negligible cross-talk between neighboring cans has been observed in measurements in such machines. This study is focused on the analysis of the acoustic interaction between the cans. Simplified two-dimensional (2D) and three-dimensional (3D) equivalent systems representing the corresponding engine alike turbine design are investigated. Thermo-acoustic instabilities are reproduced using a forced response approach. Compressible large eddy simulation based on the open source computational fluid dynamics OpenFOAM framework is used applying accurate boundary conditions for the flow and the acoustics. A study of the reflection coefficient and of the transfer function between the cans has been performed. Comparisons between 2D and 3D equivalent configurations have been evaluated.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3