Low-order modeling of collective dynamics of four ring-coupled turbulent thermoacoustic oscillators

Author:

Liao Yu,Guan YuORCID,Liu Peijin,Moon Kihun,Kim Kyu Tae

Abstract

AbstractWe investigate the low-order modeling of collective dynamics in a can-annular combustor consisting of four ring-coupled turbulent lean-premixed combustors. Each combustor is treated as an individual thermoacoustic oscillator, and the entire combustion system is modeled using four Van der Pol oscillators ring-coupled with dissipative, time-delay, and reactive coupling terms. We show that this model, despite its simplicity, can reproduce many collective dynamics observed in experiments under various combinations of equivalence ratios and combustor lengths, such as 2-can anti-phase synchronization, alternating anti-phase synchronization, pairwise anti-phase synchronization, spinning azimuthal mode, and 4 steady thermoacoustic oscillators. The phase relationship in the majority of cases can be quantitatively modeled. Moreover, by incorporating a reactive coupling term, the model is able to reproduce the frequency shift observed experimentally. This study demonstrates the feasibility of using a simple low-order model to reproduce collective dynamics in complex turbulent combustion systems. This suggests that this model could be used (i) to facilitate the interpretation of experimental data within the synchronization framework, (ii) to identify potential parameter regimes leading to amplitude death, and (iii) to serve as a basis for modeling the collective dynamics observed in more complicated multi-combustors.

Funder

Hong Kong Polytechnic University

Publisher

Springer Science and Business Media LLC

Reference69 articles.

1. Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)

2. Lieuwen, T., Yang, V.: Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics, Reston (2005)

3. Rayleigh, L.: The explanation of certain acoustical phenomena. Roy. Inst. Proc. 8, 536–542 (1878)

4. Huang, Y., Yang, V.: Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. 35(4), 293–364 (2009)

5. Poinsot, T.: Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3