Analyzing power efficiency of optimization techniques and algorithm design methods for applications on heterogeneous platforms

Author:

Ukidave Yash1,Ziabari Amir Kavyan1,Mistry Perhaad1,Schirner Gunar1,Kaeli David1

Affiliation:

1. Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA

Abstract

Graphics processing units (GPUs) have become widely accepted as the computing platform of choice in many high performance computing domains. The availability of programming standards such as OpenCL are used to leverage the inherent parallelism offered by GPUs. Source code optimizations such as loop unrolling and tiling when targeted to heterogeneous applications have reported large gains in performance. However, given the power consumption of GPUs, platforms can exhaust their power budgets quickly. Better solutions are needed to effectively exploit the power-efficiency available on heterogeneous systems. In this work, we evaluate the power/performance efficiency of different optimizations used on heterogeneous applications. We analyze the power/performance trade-off by evaluating energy consumption of the optimizations. We compare the performance of different optimization techniques on four different fast Fourier transform implementations. Our study covers discrete GPUs, shared memory GPUs (APUs) and low power system-on-chip (SoC) devices, and includes hardware from AMD (Llano APUs and the Southern Islands GPU), Nvidia (Kepler), Intel (Ivy Bridge) and Qualcomm (Snapdragon S4) as test platforms. The study identifies the architectural and algorithmic factors which can most impact power consumption. We explore a range of application optimizations which show an increase in power consumption by 27%, but result in more than 1.8 × increase in speed of performance. We observe up to an 18% reduction in power consumption due to reduced kernel calls across FFT implementations. We also observe an 11% variation in energy consumption among different optimizations. We highlight how different optimizations can improve the execution performance of a heterogeneous application, but also impact the power efficiency of the application. More importantly, we demonstrate that different algorithms implementing the same fundamental function (FFT) can perform with vast differences based on the target hardware and associated application design.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3