Investigating the effect of varying block size on power and energy consumption of GPU kernels

Author:

Ikram Muhammad JawadORCID,Saleh Mostafa Elsayed,Al-Hashimi Muhammad Abdulhamid,Abulnaja Osama Ahmed

Abstract

AbstractPower consumption is likely to remain a significant concern for exascale performance in the foreseeable future. In addition, graphics processing units (GPUs) have become an accepted architectural feature for exascale computing due to their scalable performance and power efficiency. In a recent study, we found that we can achieve a reasonable amount of power and energy savings based on the selection of algorithms. In this research, we suggest that we can save more power and energy by varying the block size in the kernel configuration. We show that we may attain more savings by selecting the optimum block size while executing the workload. We investigated two kernels on NVIDIA Tesla K40 GPU, a Bitonic Mergesort and Vector Addition kernels, to study the effect of varying block sizes on GPU power and energy consumption. The study should offer insights for upcoming exascale systems in terms of power and energy efficiency.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BTO, Block and Thread Optimization of GPU Kernels on Geophysical Exploration;2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2024-03-20

2. Optimizing Medical Image Analysis: Leveraging Efficient Hardware and AI Algorithms;2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID);2024-01-06

3. Energy-Efficient Parallel Computing: Challenges to Scaling;Information;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3