Towards making autotuning mainstream

Author:

Basu Protonu1,Hall Mary1,Khan Malik2,Maindola Suchit1,Muralidharan Saurav1,Ramalingam Shreyas1,Rivera Axel1,Shantharam Manu1,Venkat Anand1

Affiliation:

1. School of Computing, University of Utah, Salt Lake City, UT, USA

2. National University of Science and Technology, Islamabad, Pakistan

Abstract

Autotuning systems employ empirical techniques to evaluate the suitability of a search space of possible implementations of a computation. Autotuning has emerged as a critical strategy for achieving high performance as architectural complexity grows. Present-day autotuning technology augments the capabilities of expert users or is hidden inside compilers, but to date has not been adopted as a mainstream technology. Based on our prior experience and the experience of others in developing autotuning technology and applying it to libraries and applications, this paper examines some of the barriers to adoption of the technology and future research areas to break down these barriers.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference87 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Performance Tuning Techniques and Tools for Parallel Applications;IEEE Access;2022

2. Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF);ACM Transactions on Architecture and Code Optimization;2021-03-31

3. A Survey on Compiler Autotuning using Machine Learning;ACM Computing Surveys;2019-09-30

4. An Autotuning Protocol to Rapidly Build Autotuners;ACM Transactions on Parallel Computing;2019-01-23

5. Towards fine-grained dynamic tuning of HPC applications on modern multi-core architectures;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2017-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3