Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF)

Author:

Rasch Ari1ORCID,Schulze Richard1,Steuwer Michel2ORCID,Gorlatch Sergei1

Affiliation:

1. University of Muenster, Germany

2. University of Edinburgh, United Kingdom

Abstract

Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a program’s so-called tuning parameters whose values are crucial for achieving high performance for a particular parallel architecture and characteristics of input/output data. We present three new contributions of the Auto-Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning : efficiently optimizing programs whose tuning parameters have interdependencies among them. We make the following contributions to the three main phases of general-purpose auto-tuning: (1) ATF generates the search space of interdependent tuning parameters with high performance by efficiently exploiting parameter constraints; (2) ATF stores such search spaces efficiently in memory, based on a novel chain-of-trees search space structure; (3) ATF explores these search spaces faster, by employing a multi-dimensional search strategy on its chain-of-trees search space representation. Our experiments demonstrate that, compared to the state-of-the-art, general-purpose auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the search space of interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process for important applications from popular domains, including stencil computations, linear algebra routines, quantum chemistry computations, and data mining algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference70 articles.

1. OpenTuner

2. An optimal algorithm for approximate nearest neighbor searching fixed dimensions

3. ATF Artifact Implementation. 2020. Retrieved from https://gitlab.com/mdh-project/taco2020-atf. ATF Artifact Implementation. 2020. Retrieved from https://gitlab.com/mdh-project/taco2020-atf.

4. Autotuning in High-Performance Computing Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3