Computational reproducibility of scientific workflows at extreme scales

Author:

Pouchard Line1ORCID,Baldwin Sterling2,Elsethagen Todd3,Jha Shantenu1,Raju Bibi3,Stephan Eric3,Tang Li4,Van Dam Kerstin Kleese1

Affiliation:

1. Brookhaven National Laboratory, Upton, NY, USA

2. Lawrence Livermore National Laboratory, Livermore, CA, USA

3. Pacific Northwest National Laboratory, Richland, WA, USA

4. Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

We propose an approach for improved reproducibility that includes capturing and relating provenance characteristics and performance metrics. We discuss two use cases: scientific reproducibility of results in the Energy Exascale Earth System Model (E3SM—previously ACME) and performance reproducibility in molecular dynamics workflows on HPC platforms. To capture and persist the provenance and performance data of these workflows, we have designed and developed the Chimbuko and ProvEn frameworks. Chimbuko captures provenance and enables detailed single workflow performance analysis. ProvEn is a hybrid, queryable system for storing and analyzing the provenance and performance metrics of multiple runs in workflow performance analysis campaigns. Workflow provenance and performance data output from Chimbuko can be visualized in a dynamic, multilevel visualization providing overview and zoom-in capabilities for areas of interest. Provenance and related performance data ingested into ProvEn is queryable and can be used to reproduce runs. Our provenance-based approach highlights challenges in extracting information and gaps in the information collected. It is agnostic to the type of provenance data it captures so that both the reproducibility of scientific results and that of performance can be explored with our tools.

Funder

Office of Biological and Environmental Research

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asynchronous Multi-Level Checkpointing: An Enabler of Reproducibility using Checkpoint History Analytics;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

2. Automatic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-core Registries;Proceedings of the 2023 ACM Conference on Reproducibility and Replicability;2023-06-27

3. A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows;Digital Discovery;2023

4. Challenges for Implementing FAIR Digital Objects with High Performance Workflows;Research Ideas and Outcomes;2022-10-12

5. The Ghost of Performance Reproducibility Past;2022 IEEE 18th International Conference on e-Science (e-Science);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3