Porting bioinformatics applications from grid to cloud: A macromolecular surface analysis application case study

Author:

Merelli Ivan1,Cozzi Paolo1,Ronchieri Elisabetta2,Cesini Daniele2,D’Agostino Daniele3

Affiliation:

1. Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy

2. National Centre for Research and Development into the field of Information Technologies, National Institute of Nuclear Physics, Bologna, Italy

3. Institute for Applied Mathematics and Information Technologies, National Research Council of Italy, Genoa, Italy

Abstract

In this paper we describe our experience in exploiting different cloud-based environments for an actual use case taken from the bioinformatics domain – the molecular surfaces analysis - that identifies similarities and possible complementarities in the protein surfaces. The analysis of macromolecular surfaces is important since protein surface conformations drive many biological reactions. We developed a workflow that performs the macromolecular surfaces analysis and provides interesting results from a scientific point of view. An important issue is represented by the fact that it is highly compute-intensive, therefore it cannot be run on a single CPU system for meaningful use cases and a parallel infrastructure is required to obtain reasonable execution time. For a decade grid infrastructures have represented suitable solutions to achieve cost effective computational power for Bioinformatics applications. However, these solutions do not offer an adequate customisation of the computational environment (e.g. installing databases and configuring virtual network) due to the rigid organisation of the storage and computational sites. Running applications on customised machines obtained by user-defined images simplifies the computing model, decreases the failure rates and therefore reduces waiting times for production analysis with respect to the canonical grid computations. For these reasons a cloud-based approach is more suitable than a pure grid paradigm. We experimented using two cloud-based approaches, based on the Worker Node On Demand Service and on OpenStack, to run the molecular surfaces analysis use case and we compared the results in terms of performance, efficiency and efforts to build the computing model with respect to grid computing.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3