Fine-grained floating-point precision analysis

Author:

Lam Michael O1,Hollingsworth Jeffrey K2

Affiliation:

1. Department of Computer Science, James Madison University, USA

2. Department of Computer Science, University of Maryland, USA

Abstract

Floating-point computation is ubiquitous in high-performance scientific computing, but rounding error can compromise the results of extended calculations, especially at large scales. In this paper, we present new techniques that use binary instrumentation and modification to do fine-grained floating-point precision analysis, simulating any level of precision less than or equal to the precision of the original program. These techniques have an average of 40–70% lower overhead and provide more fine-grained insights into a program’s sensitivity than previous mixed-precision analyses. We also present a novel histogram-based visualization of a program’s floating-point precision sensitivity, as well as an incremental search technique that allows developers to incrementally trade off analysis time for detail, including the ability to restart analyses from where they left off. We present results from several case studies and experiments that show the efficacy of these techniques. Using our tool and its novel visualization, application developers can more quickly determine for specific data sets whether their application could be run using fewer double precision variables, saving both time and memory space.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using reactive links to propagate changes across engineering models;Software and Systems Modeling;2024-06-10

2. Fine-Grained Emotional Calculation of Emotional Expression in Modern Visual Communication Designs;Applied Mathematics and Nonlinear Sciences;2024-01-01

3. Using loop transformations for precision tuning in iterative programs;2023 IEEE 30th Symposium on Computer Arithmetic (ARITH);2023-09-04

4. Fast And Automatic Floating Point Error Analysis With CHEF-FP;2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2023-05

5. Reduced-Precision Acceleration of Radio-Astronomical Imaging on Reconfigurable Hardware;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3