Using reactive links to propagate changes across engineering models

Author:

Raţiu Cosmina-CristinaORCID,Assunção Wesley K. G.,Herac Edvin,Haas Rainer,Lauwerys Christophe,Egyed Alexander

Abstract

AbstractCollaborative model-driven development is a de facto practice to create software-intensive systems in several domains (e.g., aerospace, automotive, and robotics). However, when multiple engineers work concurrently, keeping all model artifacts synchronized and consistent is difficult. This is even harder when the engineering process relies on a myriad of tools and domains (e.g., mechanic, electronic, and software). Existing work tries to solve this issue from different perspectives, such as using trace links between different artifacts or computing change propagation paths. However, these solutions mainly provide additional information to engineers, still requiring manual work for propagating changes. Yet, most modeling tools are limited regarding the traceability between different domains, while also lacking the efficiency and granularity required during the development of software-intensive systems. Motivated by these limitations, in this work, we present a solution based on what we call “reactive links”, which are highly granular trace links that propagate change between property values across models in different domains, managed in different tools. Differently from traditional “passive links”, reactive links automatically propagate changes when engineers modify models, assuring the synchronization and consistency of the artifacts. The feasibility, performance, and flexibility of our solution were evaluated in three practical scenarios, from two partner organizations. Our solution is able to resolve all cases in which change propagation among models were required. We observed a great improvement of efficiency when compared to the same propagation if done manually. The contribution of this work is to enhance the engineering of software-intensive systems by reducing the burden of manually keeping models synchronized and avoiding inconsistencies that potentially can originate from collaborative engineering in a variety of tool from different domains.

Funder

Österreichische Forschungsförderungsgesellschaft

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3