Real-Time Performance Monitoring, Adaptive Control, and Interactive Steering of Computational Grids

Author:

Vetter Jeffrey S.1,Reed Daniel A.2

Affiliation:

1. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California

2. Department of Computer Science, University Of Illinois, Urbana, Illinois

Abstract

To support creation of nimble applications for computational grids, the authors believe one must eliminate the barrier that separates program creation from execution and post-mortem optimization. This paper outlines an approach to dynamic performance adaptation and distributed optimization in the grid environment based on a suite of performance instrumentation, analysis, and presentation tools that includes distributed performance sensors and resource policy actuators, fuzzy logic rule bases for adaptive control, and immersive visualization systems for real-time visualization and direct manipulation of software behavior.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Machine Learning Method for Cross-Platform Performance Prediction of Parallel Applications;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Green Data Analytics of Supercomputing from Massive Sensor Networks: Does Workload Distribution Matter?;Information Systems Research;2023-12

3. FUTURES-DPE;Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems;2018-11-06

4. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids;ACM Transactions on Modeling and Computer Simulation;2018-01-31

5. tFUTURES;Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems;2017-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3