Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

Author:

Yoginath Srikanth B.1,Perumalla Kalyan S.1ORCID

Affiliation:

1. Oak Ridge National Laboratory, Tennessee, USA

Abstract

Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. We present the conceptual simulation framework, algorithmic foundations, and runtime interface of C lone X, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a large parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. The results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the C lone X interface.

Funder

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Tutorial: Parallel and Distributed Methods for Scalable Discrete Simulation;2022 Winter Simulation Conference (WSC);2022-12-11

2. Mesoscopic Modeling and Rapid Simulation of Incremental Changes in Epidemic Scenarios on GPUs;Journal of the Indian Institute of Science;2021-07

3. From Effects to Causes;Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation;2019-05-29

4. Advancing Simulation Experimentation Capabilities with Runtime Interventions;2019 Spring Simulation Conference (SpringSim);2019-04

5. A Survey on Agent-based Simulation Using Hardware Accelerators;ACM Computing Surveys;2019-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3