Scheduling DAG-based workflows on single cloud instances: High-performance and cost effectiveness with a static scheduler

Author:

Taufer Michela1,Rosenberg Arnold L.2

Affiliation:

1. Computer and Information Sciences, University of Delaware, USA

2. Computer Science Department, Northeastern University, USA

Abstract

The problem of achieving high-performance cost-effectively in cloud computing is challenging when workflows have Directed Acyclic Graph (DAG)-structured inter-task dependencies. We study this problem within single cloud instances and provide empirical evidence that the static Area-Oriented DAG-Scheduling (AO) paradigm, which predetermines the order for executing a DAG’s tasks, provides both high performance and cost effectiveness. AO produces schedules in a platform-oblivious manner; it ignores the performance characteristics of the platform’s resources and focuses only on the dependency structure of the workflow. Specifically, AO’s schedules strive to enhance the rate of rendering tasks eligible for execution. Using an archive of diverse DAG-structured workflows, we experimentally compare AO with a variety of competing DAG-schedulers: (a) the static locally optimal DAG-scheduler (LO), which, like AO, is static and platform-oblivious but chooses its DAG-ordering based on tasks’ outdegrees; and (b) five dynamic versions of static schedulers (including AO and LO), each of which can violate its parent static scheduler’s prescribed task orders to avoid stalling. Our results provide evidence of AO’s supremacy as compared with LO and its essential equivalence to dynamic-AO: neither competitor yields higher performance at an lower cost than AO does. Two aspects of these results are notable. Firstly, AO is platform-oblivious, whereas dynamic-AO is intensely platform-sensitive; one would expect platform sensitivity to enhance performance. Secondly, AO outperforms LO by an order of magnitude, together with lower costs; one would not expect such a performance gap.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of Performance Evaluation Model of Cloud Computing Platform Based on Deep Learning;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

2. Performance models of data parallel DAG workflows for large scale data analytics;Distributed and Parallel Databases;2023-05-23

3. PuzzleMesh: A Puzzle Model to Build Mesh of Agnostic Services for Edge-Fog-Cloud;IEEE Transactions on Services Computing;2023-03-01

4. Blockchain-Based Task and Information Management in Computational Cloud Systems;Cybersecurity of Digital Service Chains;2022

5. Dynamic Multiworkflow Deadline and Budget Constrained Scheduling in Heterogeneous Distributed Systems;IEEE Systems Journal;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3