ON SCHEDULING SERIES-PARALLEL DAGs TO MAXIMIZE AREA

Author:

CORDASCO GENNARO1,ROSENBERG ARNOLD L.2

Affiliation:

1. Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy

2. Northeastern University, Boston, MA 02115, USA

Abstract

The AREA of a schedule for executing DAGs is the average number of DAG-chores that are eligible for execution at each step of the computation. AREA maximization is a new optimization goal for schedules that execute DAGs within computational environments, such as Internet-based computing, clouds, and volunteer computing projects, that are dynamically heterogeneous, in the sense that the environments' constituent computers can change their effective powers at times and in ways that are not predictable. This paper is motivated by the thesis that, within dynamically heterogeneous environments, DAG-schedules that have larger AREAs execute a computation-DAG with smaller completion time under many circumstances; this thesis is supported by preliminary simulation-based experiments. While every DAG admits an AREA-maximizing schedule, it is likely computationally difficult to find such a schedule for an arbitrary DAG. Earlier work has shown how to craft AREA-maximizing schedules efficiently for a number of families of DAGs whose structures are reminiscent of many scientific computations. The current paper extends this work by showing how to efficiently craft AREA-maximizing schedules for series-parallel DAGs, a family that models a multithreading computing paradigm. The techniques for crafting these schedules promise to apply also to other large families of recursively defined DAGs. Moreover, the ability to derive these schedules efficiently leads to an efficient AREA-oriented heuristic for scheduling arbitrary DAGs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact and approximation algorithms for synthesizing specific classes of optimal block-structured processes;Simulation Modelling Practice and Theory;2023-09

2. Evaluating DAG Scheduling Algorithms for Maximum Parallelism;2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2020-12

3. Revisiting dynamic DAG scheduling under memory constraints for shared-memory platforms;2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2020-05

4. String Diagrams for Assembly Planning;Diagrammatic Representation and Inference;2020

5. An enhanced priority-based scheduling heuristic for DAG applications with temporal unpredictability in task execution and data transmission;Future Generation Computer Systems;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3