Evaluation of superior layer configuration of titanium Ti-6Al-4V and aluminium 2024-T3 against soft projectiles

Author:

Senthil K1ORCID,Sharma R1,Rupali S1,Thakur A1,Iqbal MA2,Gupta NK3

Affiliation:

1. Department of Civil Engineering, National Institute of Technology Jalandhar, Punjab, India

2. Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India

3. Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India

Abstract

The manuscript is focussed on the prediction of superior layer configuration on titanium and aluminium plates through numerical investigations using ABAQUS/Explicit finite element software. The target plate of titanium Ti-6Al-4V (Ti) and aluminium Al 2024-T3 (Al) were studied against 7.62 mm diameter soft lead core projectiles. The Johnson-Cook (JC) material model was employed to simulate the behaviour of the target as well as projectile material. The results thus predicted from the numerical simulations in terms of deformed profile, residual velocity and ballistic limit were compared with the experimental results available in literature. Overall, the results were found in good agreement with the experimental results. The simulations were performed on the target of 10, 12.7 and 15 mm thickness with three, five and ten layers in order to predict the superior layer configuration. In the case of Ti-6Al-4V, the difference in performance between three layers and monolithic was quite high, however the use of five or ten layers of equivalent thickness is not advisable as performance is reduced. For Al2024-T3, the performance of layer targets was quite similar to that of monolithic targets. It is also observed the resistance of TiTiAl target configuration found to be better as compared to AlTiTi target configuration. It is concluded that the Al plate as back layer has more efficiency for ballistic resistance of layered configuration. It is also concluded that with respect to thickness, the capacity of titanium target is approximately 1.5 times higher than aluminium target against given lead core projectile.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3