Effect of spinning for different nose shape projectiles undergoing normal impact on Al 7075-T651 target

Author:

Vaggu PranayORCID,Panigrahi S.K.ORCID

Abstract

PurposeThe effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.Design/methodology/approachProjectile shape is one of the important parameters in the penetration mechanism. The present study deals with the failure mechanisms and ballistic evaluation for different nose-shaped projectiles undergoing normal impact with spinning. Materials characterization has been made by Johnson–Cook strength and failure models, and LS-DYNA simulations are used to analyse the impact of steel projectiles on an Al 7075-T651 target at different impact velocities under normal impact conditions. The experimental results from the literature are used to validate the model. Based on the residual velocity values, the Recht-Ipson model has been curve-fitted and approximate ballistic limit velocity has been evaluated. The approximated ballistic limit velocity is found to be 3.4% higher than the experimental results and compared well with the experimental results. Subsequently, the validated model conditions are used to study and analyse the effect of spinning for different nose-shaped projectiles undergoing normal impact conditions.FindingsThe ductile hole failure is observed for the ogive nose projectile, petals are formed and fragmented for the conical projectile, and plugging is observed for cylindrical projectiles. A Recht-Ipson curve is presented for each spinning condition for each projectile shape and the ballistic limit has been evaluated for each condition.Originality/valueThe proposed research outputs are original and innovative and, have a lot of importance in defence applications, particularly in arms and ammunition.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3