Non-parametric characterization of blast loads

Author:

Kirchner Matthew R1,Kirchner Shawnasie R2,Dennis Adam A3,Rigby Samuel E3ORCID

Affiliation:

1. Physics and Computational Sciences Division, Research and Intelligence Department, Naval Air Warfare Center Weapons Division, China Lake, CA, USA

2. Formerly of the Naval Air Warfare Center Weapons Division, China Lake, CA, USA

3. Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, UK

Abstract

Mathematical analysis of blast pressures has typically involved the empirical fitting of parametric models, which assumes a specific function shape. In reality, the true shape of the blast pressure is unknown and may lack a parametric form, particularly in the negative phase following arrival of the secondary shock. In this work, we develop a non-parametric (NP) representation that makes few assumptions and relies on the observed experimental data to fit a unique and previously unknown model. This differs from traditional approaches by not arbitrarily selecting a single, restrictive class of functions and estimating a minimal set of parameters, but rather estimating the underlying function class for which the blast pressure is generated; learning the model directly from the observed data. The method was applied to experimental blast measurements and the NP estimates matched the experimental data with a high degree of accuracy, both qualitatively and quantitatively. The NP approach was shown to significantly outperform other commonly used approaches, near-perfectly track the entire pressure and specific impulse history and predicting experimental peak specific impulse to within ±0.5% in all cases (compared to ±5.0% for a trained artificial neural network (ANN) and ±7.5% for the UFC semi-empirical approach). The NP approach predicts experimental net specific impulses (positive and negative phases combined) with a maximum variation of 2.7%, compared to maximum variations of −116% and 55% for the UFC and ANN approaches, respectively. Since the framework is probabilistic in nature, it can naturally account for random noise in sensor measurements, which are typically more pronounced in blast experiments than many other machine learning applications.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3