Temporally and Spatially Resolved Reflected Overpressure Measurements in the Extreme Near Field

Author:

Barr Andrew D.ORCID,Rigby Sam E.ORCID,Clarke Sam D.ORCID,Farrimond DainORCID,Tyas AndyORCID

Abstract

The design of blast-resistant structures and protective systems requires a firm understanding of the loadings imparted to structures by blast waves. While empirical methods can reliably predict these loadings in the far field, there is currently a lack of understanding on the pressures experienced in the very near field, where physics-based numerical modelling and semi-empirical fast-running engineering model predictions can vary by an order of magnitude. In this paper, we present the design of an experimental facility capable of providing definitive spatially and temporally resolved reflected pressure data in the extreme near field (Z<0.5 m/kg1/3). The Mechanisms and Characterisation of Explosions (MaCE) facility is a specific near-field evolution of the existing Characterisation of Blast Loading (CoBL) facility, which uses an array of Hopkinson pressure bars embedded in a stiff target plate. Maraging steel pressure bars and specially designed strain gauges are used to increase the measurement capacity from 600 MPa to 1800 MPa, and 33 pressure bars in a radial grid are used to improve the spatial resolution from 25 mm to 12.5 mm over the 100 mm radius measurement area. In addition, the pressure bar diameter is reduced from 10 mm to 4 mm, which greatly reduces stress wave dispersion, increasing the effective bandwidth. This enables the observation of high-frequency features in the pressure measurements, which is vital for validating the near-field transient effects predicted by numerical modelling and developing effective blast mitigation methods.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Institute for Economics & Peace (2022). The 2022 Global Terrorism Index, Institute for Economics & Peace.

2. Kingery, C.N., and Bulmash, G. (1984). Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, U.S Army BRL, Aberdeen Proving Ground. Technical Report ARBRL-TR-02555.

3. Granström, S. (1956). Loading Characteristics of Air Blasts from Detonating Charges, Transactions of the Royal Institute of Technology. Technical Report 100.

4. Development of an Improved Methodology for Predicting Airblast Pressure Relief on a Directly Loaded Wall;Rickman;J. Press. Vessel. Technol.,2007

5. Prediction of clearing effects in far-field blast loading of finite targets;Tyas;Shock Waves,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3