Dynamic response and safety control of civil air defense tunnel group during the whole process of underpass tunnel blasting excavation

Author:

Yang Feng1,Jiang Nan1ORCID,Zhou Chuanbo1,Lyu Guopeng1,Yao Yingkang2

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan, China

2. Wuhan Explosion&BlastingCo., Ltd, Jianghan University, Wuhan, China

Abstract

To ensure the safety and stability of adjacent underground structures is a key problem for the subway tunnel blasting construction. In this paper, there is a tunnel group (Sheshan civil air defense engineering) composed of several tunnel units right above a subway tunnel under blasting construction (Wuhan Metro Line 5). The vibration of the tunnel group induced by two blasting excavations of the subway tunnel was monitored. For further research, an effective 3D numerical model established by LS-DYNA, which was verified by field monitoring data, was used to analyze the dynamic response of the tunnel group in the whole process of the subway tunnel blasting. According to the numerical simulation results, the dynamic response characteristics of each tunnel unit were studied, and the most vulnerable area in each tunnel unit was determined. Then, the functional relationships between the maximum vibration velocities and the maximum tensile stresses of the vulnerable areas were established. Based on the maximum tensile stress criterion, the safety vibration velocity threshold of each vulnerable area was calculated using the relationship models. Furthermore, for convenient field monitoring during the subway construction, the safety vibration threshold at the floor of the tunnel group was also calculated. Lastly, to obtain the maximum charge per delay, five cut blasting with different charges were simulated. The maximum charge of the cut blasting in different stages of the subway tunnel blasting excavation was proposed. The research results of this paper have reference value for the blasting vibration safety control of similar tunnel excavation projects in the future.

Funder

National Natural Science Foundation of China

Hubei Key Laboratory of Blasting Engineering Foundation

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3