Theoretical Analysis of Rock Blasting Damage in Construction of Tunnels Closely Under-Passing Sewage Box Culverts

Author:

Xu JiancongORCID,Xue Huihao,Rui Guorong

Abstract

With the large-scale construction of urban traffic tunnels in China, it has become common to underpass existing buildings and structures such as sewage box culverts and pipelines using the drilling-blasting method. How to analyze accurately the blasting damage of surrounding rock and reasonably determine the safe distance between tunnel and box culvert or pipelines is an urgent issue to be solved. In this paper, the Cowper-Symonds plastic kinetic hardening model was improved using both rock initial damage degree and damage modification coefficient considering rock residual strength. The proposed model was implemented into LS-DYNA. The proposed damage model was used to evaluate the blasting construction of rock tunnels closely under-passing sewage box culverts. The results of numerical simulation using the proposed damage model shows that the blasting damage range of rock with a damage degree of more than 0.5 very significantly reduces from 1.0 m to 0.3 m as the spacing between the box culvert and the tunnel increases from 1.0 m to 4.0 m, and the evolution process of rock blasting damage can be well-presented. Moreover, the safe distance between tunnel and box culvert in blasting construction can be reasonably determined to be no less than 4.0 m. The findings in this paper could be significant for guiding the blasting construction of rock tunnels closely under-passing sewage box culverts.

Funder

Science and Technology Project of China Railway 20th Bureau Group Co., Ltd.

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3